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Abstract. The coefficient of the R,,,RR” - i R 2  part of the conformal anomaly of the stress 
tensor for arbitrary spin Weinberg-type fields in a curved background spacetime is 
calculated. The method used involves obtaining terms in the DeWitt-Schwinger expansion 
for the two-point function by explicit calculation of the complete two-point function in de 
Sitter space. 

1. Introduction 

Since the realisation that the quantum expectation value of operators which are 
classically tracefree, such as the conformal stress tensor, may develop a trace when 
calculated in a curved background spacetime (Capper and Duff 1974, Davies et a1 
1976), and that this can be a quite generally occurring phenomenon (Deser et a1 1976), 
there has been considerable activity in calculating such anomalies for various different 
fields by a variety of methods (Duncan 1977, Brown 1977, Bunch and Davies 1977, 
Dowker 1977, 1978, Dowker and Critchley 1977, Duff 1977, Tsao 1977, Christensen 
and Duff 1978). 

The occurrence of these anomalies has consequences in many areas, among the 
most important of these being the relation between the stress tensor conformal anomaly 
and the Hawking flux from a black hole (Christensen and Fulling 1977, Birrell and 
Davies 1978). More recently the importance of anomalies to supersymmetric and 
supergravity theories has been stressed (Christensen and Duff 1978). This latter paper 
also presents the results of the first calculation of the axial current and conformal trace 
anomalies for arbitrary spin quantum fields. Actually only a part of the complete trace 
anomaly is calculated in the work of Christensen and Duff, namely the C,vupClr”wp part, 
where C is the Weyl tensor. 

It has been shown (Deser et a1 1976) that the most general form for the anomaly in 
the renormalised stress tensor expectation value is 

( T ~ ) = - k ~ C , v - C ” ” P ” - k ~ ( R , ~ R u - f R 2 ) + k , 0 R  -k4R2 (1.1) 
(sign conventions are as in Davies et a1 1977). Subsequently Duff (1977) has shown that 
the so-called anomaly coefficients must satisfy 

t Equation (1.26) requires some qualification which we shall give in 5 5. 
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(1.2a) 

(1.26) 
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In this paper we complete the determination of the anomaly for higher spin fields of 
type (s, 0) by calculating the coefficient k2  in (1.1). The remaining coefficients are then 
found using the result of Christensen and Duff (1978) and equations (1.2). The value of 
k 2  is found by calculating it directly in de Sitter space using the results of the work of 
Grensing (1977). Due to this calculational method the class of higher spin fields for 
which kz  is obtained is restricted to that of the type discussed at length by Weinberg 
(Weinberg 1964a, b, c; see also the work of Dowker and Dowker 1966a, b, Dowker 
1967, and the review of Mohan 1968). These fields constitute a subset of the general 
fields used by Christensen and Duff in the calculation of k l ,  and the results of this paper 
would provide a check on their method if it were applied to a calculation of the k2  
coefficient. 

In the next section we discuss some of the properties of Weinberg-type fields in 
curved spacetimes, in particular giving consideration to the question of the conformal 
invariance of their field equations, while in 0 3 we specialise to de Sitter space to review 
and correct the calculations of Grensing (1977). In 0 4 we present the calculation of kz 
using the point separation method as the regularisation scheme (see e.g. Bunch and 
Davies 1978). The final section summarises the formulae for all the anomaly 
coefficients and compares the results with those of other authors for specific spins. We 
also mention that the complete stress tensor for arbitrary Robertson-Walker 
spacetimes is determined by these results. 

2. Weinberg-type fields in curved spacetimes 

We firstly briefly review the subject of Weinberg-type fields in flat space. The notation 
that we use is mainly that of Weinberg (Weinberg 1972, especially 00 2.12 and 12.5 
which contain an excellent introduction to the matters relevant to this work). 

The spin of a quantum field is determined by the representation of the Lorentz 
group under which it transforms. That is, for a Lorentz transformation A ; ( x )  a field Gn 
(n labels the field components) will transform as 

where D(A) is some matrix representation of the Lorentz group. For an infinitesimal 
Lorentz transformation 

A; = 8;  + U ;  

we have 
D(l  + U )  = 1 +4wa’ua,, 

where ua, are the antisymmetric generators satisfying 

:ua,, a,s l= 7 7 y s ~ c d  - 77yaU’S + 77S@ya - 77SaUy’ (2.3) 
q,, being the Minkowski metric (+ - - -) .  A representation of the Lorentz group is 
specified by giving U,,. 

The Weinberg-type fields used in this paper are defined to transform under the 
(s, O)O(O, s) representation of the Lorentz group: 
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Here the J, are the generators of the usual (2s  + 1)-dimensional representation of the 
rotation group: 

[J?' * iJY) lnm = anmil[(s T m)(s  * m + I ) ]"~  (2.6) 

[ J : " ] , , ~  = 6,,,m. (2.7) 

These 2(2s + 1)-component fields are constructed explicitly by Weinberg. In parti- 
cular (Weinberg 1964b) he writes the massive fields in a helicity basis, a method which 
we use in de Sitter space in § 3. The fields of mass m obey the Klein-Gordon equation 

(2.8) q m p  a, ao+,, + m2*,, = o 
and, because 1,6 has twice as many components as are needed, the (s,O) and (0,s) 
components of the field obey equations linking the two. We do not need these fairly 
complicated equations in the general case, but note that for m = 0 they decouple and 
may be written in one equation as (e.g. Wichmann 1962; see also Appendix 1) 

(2.9) 

The cy = 0 component gives equations (4.19) and (4.20) of Weinberg (1964b). 
Let us now turn to the treatment of such fields in a curved background spacetime 

with metric g,.,,,, Following Weinberg (1972, § 12.5) we write the metric at a point x in 
terms of a tetrad (oierbein) there: 

ao* +svCIo a,* = 0. 

g,&) = v; (X)VE (x)v,p. (2.10) 

We use letters from the beginning of the Greek alphabet as tetrad labels, which are 
raised and lowered by the flat spacetime metric. (We also have g w " =  VzViqpp,  
VzVE = SE, V,"Vz = a:.) A covariant derivative ga is defined by 

9, = v: (a, + r,) 

r , = 1  2 c  a13 v:v,,:, 

(2.11) 

where the spin connection I?,., is given by 

(2.12) 

the cap being the generators of the representation of the Lorentz group under which the 
object being differentiated transforms. Weinberg then shows that the effect of gravita- 
tion (i.e. a non-Minkowski metric) on a physical system is taken into account by 
replacing all derivatives a, in the field equations or actions of special relativity by the 
covariant derivative ga. Thus the field equation for Weinberg-type fields in curved 
space is simply given by (2.8) with such a replacement. 

Let us consider the half of 

which transforms under the (s, 0) representation of the Lorentz group (the treatment of 
+(',') is identical, or indeed they can be treated together with little extra difficulty). 
When we differentiate I ) ( ~ ~ ~ )  the first time to form 9&r(s'o) the spin connection (2.12) 
will be formed with the generators of the (s, 0) representation of the Lorentz group 

+ Note that the overall minus sign difference between (2.4) and (2.5) and the corresponding equations in 
Weinberg (1964a, b, c) is due to the difference in the signature of the metric used. 
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(2.4)-(2.6). Then 9B$(s3”) transforms under the (i, :)O(s, 0) representation, and so 
when it is differentiated the generators of this representation must be used in construc- 
ting the spin connection. If we denote the generators and spin connection for the 
(i, $)O(s, 0) representation by [ma6];k and [r,]G respectively, then it is a straightfor- 
ward task to write them in terms of the corresponding (4, i) and (s, 0) quantities as 

(2.13) 

(2.14) 

where the type of label affixed to an object specifies to which representation it belongs 
(i.e. Greek indices indicate the vector representation while Latin indices denote the 
(s, 0) representation). For the (f, 1) vector representation the generators are given by 

[CTaB IS’ = :vas - 6 h a .  (2.15) 

Bearing these considerations in mind we can write the equation for Weinberg-type 

(2.16) 

For clarity we have shown all the indices in (2.16), but shall henceforth use a highly 
abbreviated notation to denote this equation by 

( v 2 + m 2 ) $ = 0 .  (2.16’) 

(For a Lagrangian giving these field equations for m = 0 see Dowker and Dowker 
(1966a).) 

Now if we are to calculate a conformal anomaly it is imperative that the massless 
field equation be invariant under conformal transformations of the metric 

(2.17) 

fields in curved space as 

v:[s;s: a,, +[r,l;k]v:[s,” a”+[rY];]4P+m2+n = o .  

2 g,” + g,” = g,” 

where these are accompanied by transformations 

$ ( x ) + J I ( x )  =R”(x)$(x) (2.18) 

of the field (w being known as the conformal weight of the field). This symmetry then 
goes over to the massless stress tensor as well, making it tracefree (see e.g. Brown and 
Cassidy 1977, Christensen 1978). Thus the only contribution to the trace comes from 
the massive part, giving for its expectation value 

(2.19) 

where (L = ($(oxs)t,  $ ( S ’ o ) t ) .  In the limit as the points come together, this quantity is 
infinite and needs to be renormalised. The conformal trace anomaly develops in the 
renormalisation process, which results in the trace of the renormalised massless stress 
tensor being non-zero. We shall return to this point in 5 4. 

It is thus clear that we must check on the conformal invariance of (2.16) for m = 0. 
After some algebra (see Appendix 1) we obtain 94, the left-hand side of the con- 
formally transformed massless field equation, in terms of untransformed quantities to 
be 

(TE) = m2 ljm, Tr(Ol$(x”)$(x’)lO) 
x - x  

V2& = nw-2v2$ + ( 2 + 2 ~ ) n ~ - ~ n , , ( a ~  +I-”)$ +[w2+ w - S ( S  + 1 ) ] n , , , n ~ ~ - ~ +  

- 2 ~ ” - ~ n , , ~ : ~ ; ; a “ ~ ( a ,  +r,)$ + ~n~-~n:,,4. (2.20) 
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At first sight this seems to offer very little chance of giving conformal invariance, for 
which we should need everything but the first term on the right-hand side of (2.20) to 
vanish, The situation is saved, however, by noting that in flat space the fields obey the 
extra conditions (2.9). If we apply the same procedure as was used in taking equation 
(2.8) to curved space we find the curved space equivalent of (2.9) to be 

v : : ~ ; ; ~ ~ ~ ( a , + r , ) $ + ~ g ~ ” ( a , + r , ) ~  = 0. (2.21) 

Further, one can easily ve;ify (see Appendix 1) that this equation is conformally 
invariant if the field is given weight w = -s - 1. Thus, as the fields satisfying the 
massless version of the flat equation (2.8) also satisfy (2.9) (Weinberg 1964b, or see 
Appendix l), then in a conformally flat spacetime (e.g. de Sitter space) the solutions of 
the conformally invariant (massless, curved space) equivalent of (2.8) will also satisfy 
(2.21). 

V2$ = ~ ~ - ~ v ~ $  + (2 + 2~ + ~ S ) R ~ - ~ S Z , , ( ~ ”  + r’)$ 
If we make use of (2.21) we can reduce (2.20) to 

+ [ w 2 +  +sf ~ ) I R w - ~ R , , R + ~ L +  w ~ w - 3 ~ ; $ r .  

v2$ = R - S - ~ V ~ +  - (s + l)sz-~-~a:,,$. 
If we now take w = -s - 1 we obtain 

(2.22) 

Noting that under the conformal transformation (2.17) the Ricci curvature scalar in four 
dimensions transforms as 

(2.23) R +I? = RP2R + 6R-3SZrw 

we see that if instead of equation (2.16) we adopt the equation 

(V2 + m + [R )$ = 0 (2.24) 

with [ = (s + 1)/6 (henceforth called conformally coupled), then conformal invariance 
for m = 0 will result. 

In the next section we shall verify explicitly that in the massless limit the de Sitter 
space field for 6 = (s + 1)/6 is related to the flat space fields of Weinberg by a conformal 
transformation, as predicted by the analysis above. 

3. Weinberg-type fields in de Sitter space 

Grensing (1977) has considered the solution of an equation similar to (2.24) in de Sitter 
space. As the results obtained here disagree with Grensing’s on one crucial point we 
shall repeat a few of the steps leading to the fields. 

The metric for de Sitter space is 

(3.1) 2 2  g,” = (r /77 )T’” 

R = 12/r2. (3.2) 

where q is the conformal time parameter and r is a constant related to the Ricci scalar by 

The form of (2.24) in de Sitter space is most easily obtained by writing it in terms of the 
flat space quantities V,” = SE, I‘,, = 0 using (A1.4) with SZ = r /q;  this gives 

[q2aa  aa$-2q(a/aq)+2q~Oa a , + 1 2 [ + m 2 r 2 - s ( s + 1 ) ] ~ = 0 .  (3.3) 
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Following Grensing we write the positive and negative frequency parts of +(sso) as 

x*(rl, x)  = % exp(*ip. x)x*(r l ,  PI. 

1 

(3.4) 
(2.rr) 

Equation (3.3) then gives 

(3.5) 
d2 d 

7 7 ' 7  - 277- + (77~)' T 2ip. J + 125 + m2r2 - s(s + 1) x*(q ,  p )  = o [ (377 dT 

where we have used (2.4). Writing x * ( ~ ,  p )  in a helicity basis 

and the rotation matrix D"' is defined in Appendix 1, we find as the equation for U +  

In  obtaining this result we have also made use of equation ( A l .  10) (with -s replaced by 
s3). Equation (3.8) is of Whittaker's type (Whittaker and Watson 1927) and we take the 
solution 

where v 2  = 3 -  12(m2R-'  + 6) +s(s + 1). The solution for c -  is found in a similar way to 
be 

The only difference which occurs in finding +/'""is due to the difference in (2.4) between 
the (s, 0) and (0, s) generators, and we obtain for the total field 

(3.11) 

(3.12) 
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Apart from the normalisation which will be explained shortly, the obvious 
difference between Grensing's result and (3.12) is that he has used M-type Whittaker 
functions while (3.12) contains W-type functions. Grensing chooses M-type functions 
by consideration of the process in which r+CO and de Sitter space goes over to 
Minkowski space, demanding that the modes be pure positive or negative frequency 
there. To achieve this analysis he uses the asymptotic expansions of the Whittaker 
functions M k m  for large m given by Kazarinoff (1955). However, as Kazarinoff points 
out, these expressions only include dominant terms and thus do not give a true 
indication of whether or not the modes contain only positive or negative frequency 
components. It is clear for a number of reasons that it is in fact the W-type Whittaker 
functions which should be taken: 

(i) In the s = 0 case the modes (3.12) reduce to Hankel function solutions used by 
other authors in studies of the scalar field in de Sitter space (e.g. Nachtmann 1967, 
Bunch and Davies 1978), and are generally accepted as defining the vacuum in de Sitter 
space. In particular Naclitmann (1967) shows that they do indeed contract to pure 
positive and negative frequency modes as r + a). Moreover, Grensing himself uses 
Hankel function modes in studying the scalar field commutator at a later point in his 
paper. On the other hand, the M-type Whittaker functions reduce to I-type modified 
Bessel functions. 

(ii) As 7) + =O the rate of expansion of de Sitter space goes to zero and thus, from the 
work of Parker and Fulling (1974), we expect IL' to go over to a pure positive frequency 
mode. In this limit we have (Bucholz 1969, chap. 111) 

W-s3,v~2ip7) + ( 2 i p ~ P  exp(-ipv) 

while 

~(2ipq)-'? exp(ip7) + (2ip7iS3 exp[-in ( s 3 - t -  v)] exp(-ipv) 
r(l+ + s3) ~ ~ ~ , , ( 2 i p t 7 ) + r ( ~ + 2 ~ ) (  

(2+v-s3 )  
(3.13) 

Clearly the W Whittaker functions give purely positive frequencies, while the M 
functions give a mixture. Equation (3.13) also sheds some light on the situation which 
arises when Grensing considers r + CO, for then, with v = -ip as is the case in his +&,, 
the second, positive frequency, part of (3.13) is dominant, thus falsely giving the 
impression that the M-type functions can be used in the fields. 

(iii) The final check that we have taken the correct Whittaker functions in (3.12) 
involves taking the massless limit. As was decided at the end of the last section, this 
should give the usual flat space modes (Weinberg 1964b) multiplied by a conformal 
factor, provided we take 5 = i s  + 1)/6 (conformal coupling). With this choice of 6 we 
have 

(3.14) 

Following Weinberg (1964b) we must multiply by ms before taking the limit m + 0. 
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Doing this for example in $&,o,, from (3.12) we obtain 

the value of t h i  Whittaker fknction being obtained from Bucholz (1969, Appendix I). 
Apart from a factor of 1 / J 2  due to our use of 2(2s+l)-component fields, and the 
difference due to the different signature metric, this when inserted in (3.11) gives 
precisely the expected conformal factor multiplying the equivalent flat space expression 
of Weinberg (1964b, equation (4.10)). With a normalisation proportional to l / m  
forced upon one if M-type Whittaker functions are used (Grensing 1977), such a 
reduction is not possible in that case. 

It only remains to mention the differences in normalisation of the field due to the use 
of W Whittaker functions. The fields are normalised by the same prescription as was 
used by Grensing, all the differences, except for the factors arising from 
differences in the Wronskians of the two types of Whittaker functions (Bucholz 1969, p 
25). Because of the form of the normalisation condition one is able to insert in 
the top components of (3.12) provided a compensating factor of is included in 
the bottom components. This manipulation simply makes the massless limit obvious, 
but could of course be left out without affecting any of the results of the next section. 

4. Calculation of the anomaly 

As was pointed out in 0 2, the conformal trace anomaly arises because of the necessity to 
renormalise the stress tensor, and in particular its trace (2.19). The way in which the 
anomaly arises using the various available techniques for initially regularising the stress 
tensor has been much discussed in the references already cited and will not be reviewed 
here. We should, however, mention that there is general agreement between the values 
of the k2  anomaly coefficients obtained using the different methods.? We shall simply 
adopt the point-separation regularisation scheme as applied by Bunch and Davies 
(1978) (see also Bunch et a1 1978), although it is fairly obvious that had we used the 
adiabatic regularisation scheme of Parker and Fulling (1974) as implemented by Birrell 
(1978) exactly the same result would be obtained. 

The method advocated by Bunch and Davies, and described by them in some detail 
(Bunch and Davies 1978), involves expanding the point-separated stress tensor in 
powers of the separation distance and renormalising by subtracting from this terms up 
to adiabatic order four (order R2/m2) in the DeWitt-Schwinger expansion of the stress 
tensor (DeWitt 1965, 1975, Schwinger 1951). The anomaly arises from the term of 
order l / m 2  multiplied by the m2 in equation (2.19). 

Now the DeWitt-Schwinger expansion has been calculated explicitly by Christen- 
sen (1978) for spins 0, $ and spin 1 (Maxwell) fields, allowing these anomalies to be read 
off. However, lacking such results for the Weinberg fields under consideration, we can 
obtain the relevant terms in the expansion by following Bunch and Davies and 

t Apart from the recent work of Brown and Dutton (1978), in which the stress tensor does not naturally 
acquire an anomaly-although one can be added if desired. 



Conformal anomaly for Weinberg-type fields 345 

performing an asymptotic expansion in R/m of the two-point function in (2.19). For 
further discussion of this point readers are referred to Bunch and Davies (1978). 

The evaluation of the integrals in forming the two-point function is fairly involved 
and is relegated to Appendix 2. The result (after symmetrising in x“ and x‘) can be 
written as 

Tr(O/ CL (x ‘0 i ( x  ’) 10) 

I I ,  r ( S + u + ~ 3 ) r ( $ - u + ~ 3 )  1 d = -- q 2  i (-I)’% -- 
9 6 ~  s3=sm I?( 1 + 2s3)( 1 + &3,0) Ax dAx 

where A q  = 77’’- q’, Ax = ~ x ” - x ” ~  and 

integral spin 
half-odd-integral spin. Sm = 1 y 

It is easily seen that in the case s = 0 this reduces to the result obtained by previous 
authors (Bunch and Davies 1978, Candelas and Raine 1975, Dowker and Critchley 
1976). 

Since we only require the finite part of (4.1) we can immediately set A q  = 0 and 
expand in terms of Ax, using for example equation 15.3.10 of Abramowitz and Stegun 
(1964).t The only finite term which will contribute a factor R2/m2 (and thus contribute 
to the anomaly) when expanded as an asymptotic series in R/m is 

(R/96n2) f (-l)2s3(1 + 6 , 3 , 0 ) - ’ ( a + 3 s : - u 2 ) [ ~ ( t +  U + s 3 ) + 4 ( $ -  u + s g ) ] .  (4.2) 
s3 = s, 

With U for a conformally invariant scalar field being given by (3.14), the $ functions 
in (4.2) can be expanded in terms of R / m 2  (Abramowitz and Stegun 1964, equation 
(6.3.18) giving the l / m 2  term of (4.2) as 

-- l 7  + s : [ f - 3 ( y ) 2 ] + ; s ; ] .  
480 (4.3) 

Performing the sum in (4.3) and recalling that it is m2 multiplied by (4.3) which when 
subtracted from (2.19) gives the anomaly, we find 

(T::)..,,,,,,,=[(-1)2s(2s+ 1 ) / 2 8 8 0 ~ ~ ] [ 1 - 5 ~ ( 5 ~  - 1)]R2/12. 

Noting that in de Sitter space R,,,RC”” - f R 2  = -hR’, and bearing in mind (1.2a), this 
finally gives for the anomaly coefficient k2  

(4.4) k2=[(-1)2s(2~ + 1) /2880~~] [1  - 5 ~ ( 5 ~  - l)] 

a remarkable simple result after such a lot of calculation. 

t By finite we mean non-infinite and non-zero as the points come together. 
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5. Discussion of the results 

Let us first turn our attention to the special case in which a comparison of (4.4) with the 
results of other work is possible. The only results available to us are for spin-zero 
(scalar) and spin-one-half (neutrino) fields. The spin-one field for which results have 
been obtained by Dowker and Critchley (1977) and Christensen (1978) is not the same 
as the spin-one Weinberg-type field considered here, as it consists of a gauge field part 
transforming under the (4, i) representation and a contribution from ghost fields which 
transform under the (0 ,  0) representation (see Christensen and Duff 1978). 

For spins zero and one-half, equation (4.4) gives 

in agreement with previous calculations (e.g. Dowker and Critchley 1977, Bunch and 
Davies 1977, Christensen 1978). 

Thus convinced of the validity of our results we can proceed to write down all the 
anomaly coefficients for Weinberg-type fields. Specialising Christensen and Duff’s 
(1978) result to these fields gives 

(5.1) k ,  =[( -1)2’ (2~+ 1)/2880.ir2]{1 +s(s+ 1 ) [ 6 ~ ( ~ +  1)-7]}. 

Our result (4.4) is 

k2=[( -1)2S(2~ + 1 ) / 2 8 8 0 ~ ~ ] [ 1  - 5 ~ ( 5 ~  - l)]. 

k3 = [ ( -1)”(2~ + 1 ) / 2 8 8 0 ~ ~ ] { 1  +S(S - 1 ) [ 4 ~ ( ~ + 3 ) + 3 ] }  

(5.2) 

Combining (5.1) and (5 .2)  using (1.26) gives 

(5.3) 
and ( 1 . 2 ~ )  is 

kq = 0 

giving all the anomaly coefficients appearing in (1.1). 
We should point out that the status of the k3, OR, anomaly coefficient is not quite 

the same as the others, as such a term can be manipulated by the addition of an R 2  
counterterm in the gravitational action. What is more, for fields which are not 
conformally invariant in n dimensions, dimensional regularisation, which is used in 
obtaining (1.2b), will give a different value of k3 from that obtained using point splitting 
(Christensen 1978). The determination of the conformal properties of Weinberg fields 
in n dimensions is not a straightforward task due to the rotation group algebra involved, 
so we prefer to leave the status quo as far as k3 is concerned. In any case there are quite 
strong physical grounds for the complete removal of the OR anomaly using an R 2  
counterterm (Horowitz and Wald 1978). 

We finally note that a knowledge of these coefficients allows one to write down the 
entire stress tensor for the fields in an arbitrary Robertson-Walker spacetime (Bunch 
and Davies 1977, Bunch 1978). 
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Appendix 1 

In this Appendix we consider the conformal properties of (2.16) and (2.21). We start by 
deriving (2.20). For this the transformation of the spinor connection (2.12) under 
(2.17) is needed: 

i?, = r, -n-luaPv:v,,n,,. ( A l . l )  

Making use of (Al . l )  and equations (2.13)-(2.15) in v2$ (the conformal transform of 
the first term in (2.16)) we obtain 

V2+ = ~-'v:{s;ss",  a, +a;[(r,);-(u's);n-l v:v,,n,,] 
+ aS",[(r,); - (vu" v,, - v; v; )sz.,n-']} 
x R-'v;{s," 8 +(rug-  (u*4),"n-1 V ; V ; ~ , ~ } $ ~ .  

[r,, u*4]v:v; = -V;; ; ,V:~~* - V;V;;:,(+*~ 

r/,,ua~u~S = -Uap - qa*sss + 1) 

V2$ = n-'v2$ + 2n-3n,,[~w + PI$ - O - ~ S ( S  + i)n.,n."$ 
- 2n-3n, ,~;~;u*4[a,  + r,]$. 

After quite some algebra, making use of 

and 

we find 

(A1.2) 

(A1.3) 

(A1.4) 

We have dropped the indicies on the fields as no confusion can now arise. Next, making 
the field transformation (2.18) we arrive, after some more straightforward algebra, at 
(2.20). 

We now mention briefly how the flat space modes satisfy (2.9), as this allows us to 
give some of the properties of the quantities ~ ( 6 ,  s3) .  From Weinberg (1964b), the 
positive frequency, massless (s, 0) modes are 

(A1.5) dP s-1/2 
CLLOI(X) = 1 - p ( 2 p )  exp(-ip. x ) x ( b ,  - s ) a + ( p ,  -3) 

where x,(p^, -s) is given by (3.7) in terms of 

(A1.6) 

which is the rotation that maps the z axis into the direction 6 of p .  

component 
For the (s, 0) fields, using (2.4) and (2.5) we can write the first term in (2.9) as an r/ 

- J .  V$hO, (A1.7) 
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and spatial components 

J + iJ x Vq+s,~,. (A1.8) 

Using the well known relation (e.g. Merzbacher 1970, equation (16.9)) 

exp(in*.Je)Jexp(-in*.Je)=n*(n*.J)-n* x(n* x J ) c o s  e + <  x J s i n  e 
we can easily derive 

(A1.9) 

(A1.lO) 

( A l . l l )  

which when used in conjunction with (A1.5,7,8) gives (2.9). The (0, s) case is similar. 
To show the conformal invariance of the curved space equivalent of (2.9), namely 

(2.21), is quite straightforward, provided one makes use of (Al.1) and (A1.3), the 
procedure following lines similar to those used above to show the conformal invariance 
of (2.16). 

Appendix 2 

We wish to show the calculation of the integrals leading to (4.1). Using (3.11) and (3.12) 
we have 

i(Tr(@(x”)&(x’)) + (x”-x’)) = (q”q‘R/96.rr2) 1 I(s3) + (x”-x’) (A2.1) 

where 

S 

s3=-s 

I ( S 3 )  = - ‘;Js3 lom dp sin p Ax Ws,,,(2ipq”) W-s3,v(-2ipq’). 

Writing the W Whittaker functions in terms of M Whittaker functions (Gradshteyn and 
Ryzhik 1965, equation 9.220(4)) we have 

(A2.2) 

where 

and I,, simply has Tv in the second Whittaker function. 

generalised hypergeometric function of two variables as 
I,, can be evaluated (Gradshteyn and Ryzhik 1965, equation 7.622(3)) in terms of a 

( - 1 1 ~ 3  
I,F = -{(2iq’)*””2(-2i~‘’)~”~1’2[i(A~ - Ax)]-2 

21 Ax 

XF2(2;4*~-~3,  ~ T v + s ~ ;  l i 2 ~ ;  2 q “ / ( A q - A ~ ) ,  -2q’/(Aq-A~)) 

- ( A X  + -AX)}. (A2.4) 
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Using the symmetries of F2, it is easily shown that the combination I+-(sg)+  
I -+( -s3 ,  77’fsq‘‘) (recall Ax = Ix”-x’i), which appears in (A2.1), is zero. Thus there is 
no contribution from the I,, terms to (A2.1). 

To calculate I+*(s3) we write it as 

where 

Using Erdelyi (1953, equation 6.9(7)) and then Gradshteyn and Ryzhik (1965, equa- 
tion 7.622(3)) one has 

where we have converted to an ordinary hypergeometric function using ErdClyi (1953, 
equation 5.10(3)). 

Substituting this into (A2.5) which is then used in (A2.2) and making use of the 
identity 

r(;+ I, -s3)r(f- -s3) ( - 1 ) 2 s 3 + 1  d 
I ( s 3 )  + I ( - s 3 )  = r(i - 2s3) 2Ax dAx 

(A2.7) 

(A2.8) 

The term inside square brackets in (A2.8) is recognisable as the RHS of Abramowitz and 
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1 1 Stegun (1964, equation (15.3.7)) with a = 3 + v - s 3 ,  b = 3 - v - s 3 ,  c = 1-2s3, giving 

1 
2 

F( ;+ v - s3, -- Y - s3 ;  

(A2.9) 

Now the hypergeometric function in (A2.9) by itself is not defined for s3 > 0 ($3  = 
5, 1,  3, . . ,), but the limit of the hypergeometric function divided by r(1- 2s3) is, and is 
given by (Abramowitz and Stegun 1964, equation 15.1.2) 

1 3  

2, 2s3 r(i + 2s3) ( 477'77)' 

1 1 2 
(2+ V - S ~ ) ~ S ~ ( Z - I / - S ~ ) ~ S ~  477"7I'+A77 - A X  

x F ( ~ +  v + ~ 3 ,  i- v + s ~ ;  1 +2s3; 1 +(A772-A~2)/4q1q1'). 

Thus we finally have 

2 s 3 + l r ( t + Y + ~ 3 ) r ~ l - Y + + 3 )  -- 1 d 
1 ( s 3 ) + 1 ( - s 3 )  = (-1) r(i + 2s3) 2Ax dAx 

(A2.10) 

which when substituted in (A2.1) gives (4.1). 
We finally note that, because we only require the part of (A2.1) which is finite and 

non-zero when the points come together, we have not included parallel propagators in 
the calculation. 
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